|
@@ -3,38 +3,48 @@ import numpy as np
|
|
|
from datetime import datetime
|
|
|
from gnupg_encrypt import encrypt
|
|
|
import os
|
|
|
+from pathlib import Path
|
|
|
|
|
|
|
|
|
-base_dir = '/home/robert/projekte/python/planner/HBV/'
|
|
|
-hb_format = base_dir + 'hb_format.csv'
|
|
|
-hb_department = base_dir + 'hb_department.csv'
|
|
|
-hb_translation = base_dir + 'hb_translation.csv'
|
|
|
-plan_amount = base_dir + '../export/Planner_2022_V2_Stk.csv'
|
|
|
-plan_values = base_dir + '../export/Planner_2022_V2_Plan.csv'
|
|
|
+current_year = '2023'
|
|
|
+current_version = 'V1'
|
|
|
|
|
|
-hb_ignored = base_dir + 'ignoriert.csv'
|
|
|
+base_dir = Path().cwd()
|
|
|
+config_dir = base_dir / 'config/hbv'
|
|
|
+export_dir = base_dir / 'export'
|
|
|
+hb_format = config_dir / 'hb_format.csv'
|
|
|
+hb_department = config_dir / 'hb_department.csv'
|
|
|
+hb_translation = config_dir / 'hb_translation.csv'
|
|
|
+plan_amount = export_dir / f'Planner_{current_year}_{current_version}_Stk.csv'
|
|
|
+plan_values = export_dir / f'Planner_{current_year}_{current_version}_Plan.csv'
|
|
|
+
|
|
|
+hb_ignored = export_dir / 'hbv/ignoriert.csv'
|
|
|
|
|
|
-current_year = '2022'
|
|
|
current_date = datetime.now().strftime('%d%m%Y%H%M%S')
|
|
|
# current_date = '24032021112656'
|
|
|
|
|
|
|
|
|
def main():
|
|
|
# Übersetzungstabelle importieren
|
|
|
- df_translation = pd.read_csv(hb_translation, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
|
|
|
- # df_translation['column_no_join'] = np.where(df_translation['column_no'].isin(['1', '3', '4']), df_translation['column_no'], '0')
|
|
|
+ df_translation = pd.read_csv(hb_translation, decimal=',', sep=';',
|
|
|
+ encoding='latin-1', converters={i: str for i in range(0, 200)})
|
|
|
+ # df_translation['column_no_join'] = np.where(df_translation['column_no']
|
|
|
+ # .isin(['1', '3', '4']), df_translation['column_no'], '0')
|
|
|
# Department-Zuordnung importieren
|
|
|
- df_department = pd.read_csv(hb_department, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
|
|
|
+ df_department = pd.read_csv(hb_department, decimal=',', sep=';',
|
|
|
+ encoding='latin-1', converters={i: str for i in range(0, 200)})
|
|
|
|
|
|
# Planwerte importieren
|
|
|
values_converter = {i: str for i in range(0, 200)}
|
|
|
values_converter[4] = lambda x: np.float64(x.replace(',', '.') if x != '' else 0.0)
|
|
|
values_converter[5] = values_converter[4]
|
|
|
- df_values = pd.read_csv(plan_values, decimal=',', sep=';', encoding='latin-1', converters=values_converter) # encoding='latin-1',
|
|
|
+ df_values = pd.read_csv(plan_values, decimal=',', sep=';',
|
|
|
+ encoding='latin-1', converters=values_converter)
|
|
|
df_values['Gesamt'] = df_values['Gesamt'] + df_values['Periode13']
|
|
|
df_values['type'] = '2'
|
|
|
df_values['type'] = np.where(df_values['Vstufe 1'].isin(['Materialaufwand']), '3', df_values['type'])
|
|
|
- df_amount = pd.read_csv(plan_amount, decimal=',', sep=';', encoding='latin-1', converters=values_converter) # , encoding='latin-1'
|
|
|
+ df_amount = pd.read_csv(plan_amount, decimal=',', sep=';',
|
|
|
+ encoding='latin-1', converters=values_converter)
|
|
|
df_amount['type'] = '1'
|
|
|
df: pd.DataFrame = df_values.append(df_amount)
|
|
|
|
|
@@ -59,8 +69,8 @@ def main():
|
|
|
|
|
|
for group in df_valid.groups:
|
|
|
g = dict(zip(group_by, group))
|
|
|
- filename = base_dir + f"{current_year}/{g['BV_NUMMER']}_{g['FILIAL_NR']}/HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
|
|
|
- os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
|
+ filename = export_dir / f"hbv/{current_year}/{g['BV_NUMMER']}_{g['FILIAL_NR']}/HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
|
|
|
+ os.makedirs(filename.parent, exist_ok=True)
|
|
|
df_group = df_valid.get_group(group).groupby(rename_to[:-1]).sum().reset_index()
|
|
|
with open(filename, 'w') as fwh:
|
|
|
for row in df_group.to_dict(orient='records'):
|