plan_export.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. import pandas as pd
  2. import numpy as np
  3. base_dir = '/home/robert/projekte/planner/export'
  4. id_header = ['Ebene' + str(i) for i in range(1, 11)]
  5. # values2_header = ['VJ', 'AJ', 'FC', 'Plan_ori', 'Plan_Prozent', 'Stk', 'VAK', 'BE_Prozent', 'Plan_VJ', 'Plan_Stk_VJ', 'Plan',
  6. # 'Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez', 'Periode13']
  7. values2_header = ['Plan', 'Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez', 'Periode13',
  8. 'Plan_ori', 'Plan_Prozent', 'Stk', 'VAK', 'BE_Prozent', 'frei',
  9. 'VJ', 'VJ_Stk', 'AJ', 'AJ_Stk', 'AJ_Okt', 'AJ_Okt_Stk', 'FC', 'FC_Stk', 'Plan_VJ', 'Plan_VJ_Stk']
  10. season_header = ['Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez']
  11. info_header = ['text', 'costcenter', 'department']
  12. header = info_header + id_header + values2_header
  13. season_export_header = info_header + season_header
  14. source_header = ['department', 'text', 'costcenter', 'Ebene1', 'Plan', 'Periode13']
  15. export_header = ['Betrieb Nr', 'Zeile mit Bez', 'Bereich', 'Vstufe 1', 'Gesamt', 'Periode13'] # 'Version', 'Konto', 'Jahr']
  16. def expand(df, header, values_label):
  17. for i, key in enumerate(header):
  18. df[key] = df[values_label].str[i]
  19. return df
  20. def apply_season(df):
  21. df['Saison'] = df['Ebene1'].str.contains('Umsatzerlöse|Materialaufwand|Verkaufsabh. Kosten')
  22. for i, key in enumerate(season_header):
  23. df['temp'] = np.where((df['Saison']) & (df[key + '_2'] != 8.3333), df['Plan'] * df[key + '_2'] / 100, df['Plan'] / 12)
  24. df[key] = np.where(df[key] == 0, df['temp'], df[key] * df['Minus1'])
  25. df['Dez'] = df['Plan'] - df[season_header].sum(axis=1) + df['Dez']
  26. return df
  27. def data_cleansing(filename):
  28. df = pd.read_json(filename)
  29. df['values2'] = df['values2'].apply(lambda v: list(v.items()))
  30. df = df.explode('values2')
  31. df['department'], df['values2'] = zip(*df['values2'])
  32. df['id'] = df['id'].str.split(';')
  33. df = expand(df, id_header, 'id')
  34. df = expand(df, values2_header, 'values2')
  35. return df
  36. def export_plan(filename, version, target_year, amount_value):
  37. df = data_cleansing(f'{base_dir}/{filename}.json')
  38. season = df[(df['level'] == 2) & (df['Ebene1'] == 'Umsatzerlöse')].copy()
  39. season['Dez'] = (100 - season[season_header].sum(axis=1) + season['Dez']).round(4)
  40. season[season_export_header].to_csv(f'{base_dir}/Planner_{target_year}_{version}_Saison.csv',
  41. encoding='latin_1', sep=';', decimal=',', index=False)
  42. df['Minus1'] = np.where(df['Ebene1'] != 'Umsatzerlöse', -1, 1)
  43. df['Plan'] = df[amount_value] * df['Minus1']
  44. if amount_value == 'Plan':
  45. df['Periode13'] = df['Periode13'] * df['Minus1']
  46. else:
  47. df['Periode13'] = 0
  48. plan = df[df['planlevel'] == True]
  49. plan = pd.merge(plan, season, how='left', on=['Ebene2', 'department'], suffixes=('', '_2'))
  50. plan = apply_season(plan)
  51. plan = plan[source_header + season_header].rename(columns=dict(zip(source_header, export_header)))
  52. # Reisacher Spezialbedingungen
  53. plan['Zeile'] = plan['Zeile mit Bez'].str.slice(stop=4)
  54. plan['Zeile'] = np.where(plan['Zeile mit Bez'].isin(['BMW aus Leasingrücklauf BFS', 'BMW aus Leasingrücklauf Alphabet']),
  55. '3040', plan['Zeile'])
  56. plan['Zeile'] = np.where(plan['Zeile mit Bez'].isin(['BMW an Wiederverkäufer BFS', 'BMW an Wiederverkäufer Alphabet']),
  57. '3120', plan['Zeile'])
  58. desciption = pd.read_csv(f'{base_dir}/../data/Planner_Zeilen_Bez.csv', sep=';', encoding='latin-1', dtype={0: str, 1: str})
  59. plan = pd.merge(plan, desciption, how='left', on=['Zeile'], suffixes=['', '_3'])
  60. plan['Zeile mit Bez'] = plan['Zeile mit Bez_3']
  61. plan.drop(['Zeile mit Bez_3'], axis=1, inplace=True)
  62. if amount_value == 'Stk':
  63. plan = plan[plan['Vstufe 1'] == 'Umsatzerlöse']
  64. plan['Vstufe 1'] = 'Verk. Stückzahlen'
  65. plan['Version'] = version
  66. plan['Konto'] = ''
  67. plan['Jahr'] = target_year
  68. plan.to_csv(f'{base_dir}/Planner_{target_year}_{version}_{amount_value}.csv', encoding='latin_1',
  69. sep=';', decimal=',', index=False)
  70. if __name__ == '__main__':
  71. # export_plan('V3', '2021', 'Plan')
  72. # export_plan('V3', '2021', 'Stk')
  73. filename = '../save/2023_V1_20230125100429'
  74. export_plan(filename, 'V1', '2023', 'Plan')
  75. export_plan(filename, 'V1', '2023', 'Stk')