123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689 |
- import pandas as pd
- import numpy as np
- import xml.etree.ElementTree as ET
- import json
- import csv
- import re
- import chevron
- # from shutil import copyfile
- from bs4 import BeautifulSoup
- from functools import reduce
- from pathlib import Path
- def get_flat(node):
- result = [
- {
- "id": node["id"],
- "text": node["text"],
- "children": [x["id"] for x in node["children"]],
- "children2": [],
- "parents": node["parents"],
- "accounts": node["accounts"],
- "costcenter": "",
- "level": node["level"],
- "drilldown": node["level"] < 2, # (node['level'] != 2 and len(node['accounts']) == 0),
- "form": node["form"],
- "accountlevel": False,
- "absolute": True,
- "seasonal": True,
- "status": "0",
- "values": [],
- "values2": {},
- }
- ]
- for child in node["children"]:
- result += get_flat(child)
- return result
- def get_parents_list(p_list):
- id = ";".join(p_list) + ";" * (10 - len(p_list))
- if len(p_list) > 0:
- return [id] + get_parents_list(p_list[:-1])
- return [";" * 9]
- def structure_from_tree(node):
- result = []
- result.append(node["id"])
- for child in node["children"]:
- result.extend(structure_from_tree(child))
- return result
- def xml_from_tree(xml_node, tree_node):
- for child in tree_node["children"]:
- element = ET.SubElement(xml_node, "Ebene")
- element.set("Name", child["text"])
- xml_from_tree(element, child)
- def split_it(text, index):
- try:
- return re.findall(r"([^;]+) - ([^;]*);;", text)[0][index]
- except Exception:
- return ""
- def last_layer(text):
- try:
- return re.findall(r"([^;]+);;", text)[0]
- except Exception:
- return ""
- def get_default_cols(i):
- return ["Ebene" + str(i) for i in range(i * 10 + 1, (i + 1) * 10 + 1)]
- def get_structure_exports(s):
- result = {
- "files": {},
- "format": {
- "KontoFormat": "{0} - {1}",
- "HerstellerkontoFormat": "{{Herstellerkonto_Nr}}",
- "HerstellerBezeichnungFormat": "{{Herstellerkonto_Bez}}",
- "NeueHerstellerkontenAnlegen": False,
- },
- }
- export_files = [
- "ExportStk",
- "ExportStrukturenStk",
- "ExportAdjazenz",
- "ExportUebersetzung",
- "ExportUebersetzungStk",
- "ExportHerstellerKontenrahmen",
- ]
- export_format = [
- "KontoFormat",
- "HerstellerkontoFormat",
- "HerstellerBezeichnungFormat",
- "NeueHerstellerkontenAnlegen",
- ]
- for e in export_files:
- if s.find(e) is not None and s.find(e).text is not None and s.find(e).text[-4:] == ".csv":
- result["files"][e] = s.find(e).text
- for e in export_format:
- if s.find(e) is not None and s.find(e).text != "":
- result["format"][e] = s.find(e).text
- result["format"]["NeueHerstellerkontenAnlegen"] = result["format"]["NeueHerstellerkontenAnlegen"] == "true"
- return result
- class GCStruct:
- config = {
- "path": "c:/projekte/python/gcstruct",
- "path2": "c:/projekte/python/gcstruct",
- "file": "c:/projekte/python/gcstruct/config/config.xml",
- "output": "gcstruct.json",
- "default": [],
- "special": {},
- "special2": {"Planner": ["Kostenstelle", "Ebene1", "Ebene2"], "Test": ["Ebene1", "Ebene2"]},
- "columns": [
- "Konto_Nr",
- "Konto_Bezeichnung",
- "Konto_Art",
- "Konto_KST",
- "Konto_STK",
- "Konto_1",
- "Konto_2",
- "Konto_3",
- "Konto_4",
- "Konto_5",
- ],
- "struct": {},
- "export": {},
- }
- json_result = {"accounts": {}, "tree": {}, "flat": {}, "struct_export": {}, "skr51_vars": {}}
- structure_ids = []
- translate = {
- "Konto_Nr": "SKR51",
- "Kostenstelle": "KST",
- "Absatzkanal": "ABS",
- "Kostenträger": "KTR",
- "Marke": "MAR",
- "Standort": "STA",
- "Marke_HBV": "MAR",
- "Standort_HBV": "BMC",
- }
- def __init__(self, struct_dir, export_dir=None):
- self.config["path"] = struct_dir
- self.config["path2"] = struct_dir + "/export" if export_dir is None else export_dir
- self.config["file"] = f"{self.config['path']}/config/gcstruct.xml"
- if not Path(self.config["file"]).exists():
- self.config["file"] = f"{self.config['path']}/config/config.xml"
- cfg = ET.parse(self.config["file"])
- self.config["default"] = [
- s.find("Name").text for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
- ]
- self.config["export"] = dict(
- [
- (s.find("Name").text, get_structure_exports(s))
- for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
- ]
- )
- struct = dict([(x, get_default_cols(i)) for (i, x) in enumerate(self.config["default"])])
- struct.update(self.config["special"])
- self.config["struct"] = struct
- # print(self.config['struct'])
- def export_header(self, filetype):
- return {
- "ExportStk": [],
- "ExportStrukturenStk": [],
- "ExportAdjazenz": [],
- "ExportUebersetzung": ["Konto_Nr_Hersteller", "Konto_Nr_Split", "Konto_Nr_Haendler", "Info"],
- "ExportUebersetzungStk": ["Konto_Nr_Hersteller", "Konto_Nr_Split", "Konto_Nr_Haendler", "Info"],
- "ExportHerstellerKontenrahmen": ["Konto_Nr", "Konto_Bezeichnung", "Case", "Info"],
- }[filetype]
- def accounts_from_csv(self, struct):
- max_rows = (len(self.config["default"]) + 1) * 10
- with open(f"{self.config['path']}/Kontenrahmen/Kontenrahmen.csv", "r", encoding="latin-1") as f:
- csv_reader = csv.reader(f, delimiter=";")
- imported_csv = [row[:max_rows] for row in csv_reader]
- df = pd.DataFrame.from_records(np.array(imported_csv[1:], dtype="object"), columns=imported_csv[0]).fillna(
- value=""
- )
- df = df.rename(columns={"Kostenstelle": "Konto_KST", "STK": "Konto_STK"})
- for i, (s, cols) in enumerate(struct.items()):
- df[s] = reduce(lambda x, y: x + ";" + df[y], cols, "")
- df[s] = df[s].apply(lambda x: x[1:])
- df["LetzteEbene" + str(i + 1)] = df[s].apply(lambda x: last_layer(x))
- df["LetzteEbene" + str(i + 1) + "_Nr"] = df[s].apply(lambda x: split_it(x, 0))
- df["LetzteEbene" + str(i + 1) + "_Bez"] = df[s].apply(lambda x: split_it(x, 1))
- df["Herstellerkonto_Nr"] = df["LetzteEbene1_Nr"]
- df["Herstellerkonto_Bez"] = df["LetzteEbene1_Bez"]
- return df
- def tree_from_xml(self, struct, df):
- result = {}
- for s, cols in struct.items():
- try:
- tree = ET.parse(f"{self.config['path']}/Xml/{s}.xml")
- result[s] = self.get_tree_root(tree.getroot(), s)
- except FileNotFoundError:
- print("XML-Datei fehlt")
- used_entries = [x.split(";")[1:] for x in set(df[s].to_numpy())]
- print(used_entries)
- root = ET.Element("Ebene")
- root.set("Name", s)
- result[s] = self.get_tree_root(root, s)
- # self.json_result["tree"][s] = get_tree_from_accounts(cols, [])
- return result
- def get_structure_and_tree(self):
- df = self.accounts_from_csv(self.config["struct"])
- self.json_result["accounts"] = df.to_dict("records")
- self.structure_ids = df.melt(
- id_vars=["Konto_Nr"], value_vars=self.config["struct"].keys(), var_name="Struktur", value_name="id"
- ).groupby(by=["Struktur", "id"])
- self.json_result["tree"] = self.tree_from_xml(self.config["struct"], df)
- for s, cols in self.config["struct"].items():
- self.json_result["flat"][s] = get_flat(self.json_result["tree"][s])
- for s, entries in self.json_result["flat"].items():
- cols = self.config["struct"][s]
- df_temp = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
- self.json_result["struct_export"][s] = df_temp.to_dict(orient="records")
- # {'accounts': {}, 'tree': {}, 'flat': {}, 'struct_export': {}, 'skr51_vars': {}}
- json.dump(self.json_result, open(f"{self.config['path2']}/{self.config['output']}", "w"), indent=2)
- return self.json_result
- def get_accounts(self, structure, id):
- return [x["Konto_Nr"] for x in self.json_result["accounts"] if x[structure] == id]
- # return []
- # res = self.structure_ids.groups.get((structure, id))
- # if res is None:
- # return []
- # return res.values
- def export(self):
- for s in self.config["export"].keys():
- for filetype, filename in self.config["export"][s]["files"].items():
- with open(self.config["path2"] + "/" + filename, "w") as fwh:
- fwh.write("Konto_Nr_Hersteller;Konto_Nr_Split;Konto_Nr_Haendler;Info\n")
- # 'Hersteller'Konto_Nr;Konto_Bezeichnung;Case;Info'
- for a in self.json_result["accounts"]:
- if a["Herstellerkonto_Nr"] != "":
- account = chevron.render(
- self.config["export"]["SKR51"]["format"]["HerstellerkontoFormat"], a
- )
- fwh.write(
- account + ";" + account + ";" + a["Konto_Nr"] + ";" + "\n"
- ) # a['Herstellerkonto_Bez']
- def get_tree(self, node, parents, structure):
- result = []
- for child in node:
- p = get_parents_list(parents)
- parents.append(child.attrib["Name"])
- id = ";".join(parents) + ";" * (10 - len(parents))
- result.append(
- {
- "id": id,
- "text": child.attrib["Name"],
- "children": self.get_tree(child, parents, structure),
- "parents": p,
- "accounts": self.get_accounts(structure, id),
- "level": len(parents),
- "form": child.attrib.get("Split", ""),
- }
- )
- parents.pop()
- return result
- def get_tree_root(self, node, structure):
- id = ";" * 9
- return {
- "id": id,
- "text": node.attrib["Name"],
- "children": self.get_tree(node, [], structure),
- "parents": [],
- "accounts": [],
- "level": 0,
- "form": "",
- }
- def post_structure_and_tree(self):
- json_post = json.load(open(f"{self.config['path']}/{self.config['output']}", "r"))
- # Kontenrahmen.csv
- ebenen = ["Ebene" + str(i) for i in range(1, len(self.config["default"]) * 10 + 1)]
- header = ";".join(self.config["columns"] + ebenen)
- cols = self.config["columns"] + self.config["default"]
- with open(self.config["path"] + "/Kontenrahmen/Kontenrahmen_out.csv", "w", encoding="latin-1") as f:
- f.write(header + "\n")
- for row in json_post["Kontenrahmen"]:
- f.write(";".join([row[e] for e in cols]) + "\n")
- # print(header)
- # xml und evtl. Struktur.csv
- for i, s in enumerate(self.config["default"]):
- with open(f"{self.config['path']}/Strukturen/Kontenrahmen.csv/{s}_out.csv", "w", encoding="latin-1") as f:
- f.write(";".join(["Ebene" + str(i * 10 + j) for j in range(1, 11)]) + "\n")
- rows = structure_from_tree({"id": ";" * 9, "children": json_post[s]})
- f.write("\n".join(rows))
- # with open(self.config['path'] + "/Strukturen/Kontenrahmen.csv/" +
- # structure + "_2.csv", "w", encoding="latin-1") as f:
- root = ET.Element("Ebene")
- root.set("Name", s)
- xml_from_tree(root, {"id": ";" * 9, "children": json_post[s]})
- with open(f"{self.config['path']}/Xml/{s}_out.xml", "w", encoding="utf-8") as f:
- f.write(BeautifulSoup(ET.tostring(root), "xml").prettify())
- def skr51_translate(self, accounts_combined_files):
- df = self.accounts_from_csv(self.config["struct"])
- df_translate = {}
- for i, (t_from, t_to) in enumerate(self.translate.items()):
- last = "LetzteEbene" + str(i + 1)
- from_label = [
- "Konto_Nr",
- last,
- last + "_Nr",
- last + "_Bez",
- "Ebene" + str(i * 10 + 1),
- "Ebene" + str(i * 10 + 2),
- ]
- to_label = [t_to, t_to + "_Ebene", t_to + "_Nr", t_to + "_Bez", "Ebene1", "Ebene2"]
- df_translate[t_from] = df[df[last + "_Nr"] != ""][from_label].rename(
- columns=dict(zip(from_label, to_label))
- )
- # print(df_translate[t_to].head())
- df2 = []
- for ac_file in accounts_combined_files:
- df2.append(
- pd.read_csv(
- ac_file, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
- )
- )
- df_source = pd.concat(df2)
- df3 = df_source.copy()
- df3["Konto_Nr"] = df3["Konto_Nr"] + "_STK"
- df_source = pd.concat([df_source, df3])
- for t_from, t_to in self.translate.items():
- if t_to == "SKR51":
- df_source["SKR51"] = df_source["Konto_Nr"]
- elif t_from in ["Marke_HBV"]:
- df_source["Marke_HBV"] = df_source["Marke"]
- elif t_from in ["Standort_HBV"]:
- df_source["Standort_HBV"] = df_source["Standort"] + "_" + df_source["Marke"]
- df_source["BMC"] = "BMC_" + df_source["Standort_HBV"]
- elif t_to == "KTR":
- df_source["KTR"] = np.where(
- df_source["Kostenträger_Quelle"] == "TZ", "KTR_TZ_" + df_source["Kostenträger"], "KTR_00"
- )
- df_source["KTR"] = np.where(
- df_source["Kostenträger_Quelle"].isin(["NW", "SC"]),
- "KTR_"
- + df_source["Kostenträger_Quelle"]
- + "_"
- + df_source["Marke"]
- + "_"
- + df_source["Kostenträger"],
- df_source["KTR"],
- )
- else:
- df_source[t_to] = t_to + "_" + df_source[t_from]
- df_source = df_source.merge(df_translate[t_from], how="left", on=[t_to], suffixes=(None, "_" + t_to))
- df_source[t_to + "_Nr"] = np.where(
- df_source[t_to + "_Nr"].isna(), df_source[t_from], df_source[t_to + "_Nr"]
- )
- df_source["Konto_Nr_SKR51"] = (
- df_source["MAR_Nr"]
- + "-"
- + df_source["STA_Nr"]
- + "-"
- + df_source["SKR51_Nr"]
- + "-"
- + df_source["KST_Nr"]
- + "-"
- + df_source["ABS_Nr"]
- + "-"
- + df_source["KTR_Nr"]
- )
- df_source["Konto_Nr_Händler"] = (
- df_source["Marke"]
- + "-"
- + df_source["Standort"]
- + "-"
- + df_source["Konto_Nr"]
- + "-"
- + df_source["Kostenstelle"]
- + "-"
- + df_source["Absatzkanal"]
- + "-"
- + df_source["Kostenträger"]
- )
- # df_source.to_csv(f"{self.config['path2']}/SKR51_Uebersetzung.csv", sep=';', encoding='latin-1', index=False)
- df_source["MAR_Nr_MAR"] = np.where(df_source["MAR_Nr_MAR"].isna(), "0000", df_source["MAR_Nr_MAR"])
- from_label = [
- "MAR_Nr",
- "STA_Nr",
- "SKR51_Nr",
- "KST_Nr",
- "ABS_Nr",
- "KTR_Nr",
- "KTR_Ebene",
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- "MAR_Nr_MAR",
- "BMC_Nr",
- ]
- to_label = [
- "Marke",
- "Standort",
- "Konto_Nr",
- "Kostenstelle",
- "Absatzkanal",
- "Kostenträger",
- "Kostenträger_Ebene",
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- "Marke_HBV",
- "Standort_HBV",
- ]
- df_combined = df_source[from_label].rename(columns=dict(zip(from_label, to_label)))
- df_combined.to_csv(
- f"{self.config['path2']}/Kontenrahmen_uebersetzt.csv", sep=";", encoding="latin-1", index=False
- )
- def skr51_translate2(self, accounts_combined_file):
- df = self.accounts_from_csv(self.config["struct"])
- df_list = []
- for i, s in enumerate(self.config["struct"].keys()):
- from_label = ["Konto_Nr", "Ebene" + str(i * 10 + 1), "Ebene" + str(i * 10 + 2), "Ebene" + str(i * 10 + 3)]
- to_label = ["Konto_Nr", "key", "value", "value2"]
- df_temp = df[from_label].rename(columns=dict(zip(from_label, to_label)))
- df_temp["key"] = "{" + s + "/" + df_temp["key"] + "}"
- df_list.append(df_temp[df_temp["value"] != ""])
- df_translate = pd.concat(df_list)
- # df_translate.to_csv(f"{self.config['path2']}/SKR51_Variablen.csv", sep=';', encoding='latin-1', index=False)
- df_source = pd.read_csv(
- accounts_combined_file, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
- )
- df_source = df_source[df_source["Konto_Nr"].str.contains("_STK") == False]
- df_source["Konto_Nr_Gesamt"] = df_source["Konto_Nr"]
- df_source["Konto_Nr"] = np.where(
- df_source["Konto_Nr"].str.contains(r"^[4578]"),
- df_source["Konto_Nr"] + "_" + df_source["Kostenstelle"].str.slice(stop=1),
- df_source["Konto_Nr"],
- )
- df_source["Konto_Nr"] = np.where(
- df_source["Konto_Nr"].str.contains(r"^5\d+_4"),
- df_source["Konto_Nr"] + df_source["Kostenstelle"].str.slice(start=1, stop=2),
- df_source["Konto_Nr"],
- )
- df_source = df_source.merge(df, how="left", on=["Konto_Nr"])
- # rows = df_source.shape[0]
- df_source["value"] = ""
- cols = get_default_cols(0)
- for t_from, t_to in self.translate.items():
- if t_from in ["Marke_HBV", "Standort_HBV"]:
- continue
- if t_from == "Konto_Nr":
- df_source[t_to] = df_source[t_from]
- else:
- df_source[t_to] = t_to + "_" + df_source[t_from]
- for e in cols:
- df_source = df_source.merge(
- df_translate,
- how="left",
- left_on=[t_to, e],
- right_on=["Konto_Nr", "key"],
- suffixes=(None, "_" + t_to + "_" + e),
- )
- df_source[e] = np.where(
- df_source["value_" + t_to + "_" + e].notna(), df_source["value_" + t_to + "_" + e], df_source[e]
- )
- # if df_source.shape[0] > rows:
- # print(t_to + '_' + e + ': ' + str(df_source.shape[0]))
- # df_source.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
- # df_source[t_to + '_Nr'] = np.where(df_source[t_to + '_Nr'].isna(), df_source[t_from], df_source[t_to + '_Nr'])
- for e in cols:
- df_source[e] = np.where(
- df_source[e].str.startswith("{"),
- df_source[e].str.extract(r"\/(.*)}", expand=False) + " falsch",
- df_source[e],
- ) # df_source[e].str.extract(r'/(.*)}') +
- df_source[e] = np.where(df_source[e] == "[KTR]", df_source["Kostenträger_Ebene"], df_source[e])
- # df_all[df_all['Ebene1'] == ]
- # print(df_source.head())
- df_source["Konto_neu"] = (
- df_source["Marke"]
- + "-"
- + df_source["Standort"]
- + "-"
- + df_source["Konto_Nr"]
- + "-"
- + df_source["Kostenstelle"]
- + "-"
- + df_source["Absatzkanal"]
- + "-"
- + df_source["Kostenträger"]
- + " - "
- + df_source["Konto_Bezeichnung"]
- )
- df_source["Ebene1_empty"] = df_source["Ebene1"].isna() # , df_source['Ebene1'].map(lambda x: x == ''))
- df_source["Konto_neu"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_neu"])
- df_source["Ebene1"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Ebene1"])
- df_source["Konto_Gruppe"] = df_source["Konto_Nr"] + " - " + df_source["Konto_Bezeichnung"]
- df_source["Konto_Gruppe"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_Gruppe"])
- df_source["Konto_Gesamt"] = df_source["Konto_Nr_Gesamt"] + " - " + df_source["Konto_Bezeichnung"]
- df_amount = df_source[df_source["Ebene1"] == "Umsatzerlöse"].reset_index()
- df_amount["Ebene1"] = "verkaufte Stückzahlen"
- df_amount["Ebene72"] = "verkaufte Stückzahlen"
- df_amount["Konto_neu"] = "STK " + df_amount["Konto_neu"]
- df_amount["Konto_Nr_Händler"] = df_amount["Konto_Nr_Händler"] + "_STK"
- df_amount["Konto_Gruppe"] = "STK " + df_amount["Konto_Gruppe"]
- df_amount["Konto_Gesamt"] = "STK " + df_amount["Konto_Gesamt"]
- df_source = pd.concat([df_source, df_amount])
- df_source["GuV"] = df_source["Ebene71"] == "GuV"
- df_source["Ebene81"] = np.where(df_source["GuV"], df_source["Ebene72"], "Bilanz")
- df_source["Ebene82"] = np.where(df_source["GuV"], df_source["Ebene73"], "")
- df_source["Ebene83"] = np.where(df_source["GuV"], df_source["Ebene74"], "")
- df_source["Ebene84"] = np.where(df_source["GuV"], df_source["Ebene75"], "")
- df_source["Ebene85"] = np.where(df_source["GuV"], df_source["Ebene76"], "")
- df_source["Ebene86"] = np.where(df_source["GuV"], df_source["Ebene77"], "")
- df_source["Ebene87"] = np.where(df_source["GuV"], df_source["Ebene78"], "")
- df_source["Ebene88"] = np.where(df_source["GuV"], df_source["Ebene79"], "")
- df_source["Ebene89"] = np.where(df_source["GuV"], df_source["Ebene80"], "")
- df_source["Ebene90"] = ""
- df_source["Ebene71"] = np.where(df_source["GuV"], "GuV", df_source["Ebene72"])
- df_source["Ebene72"] = np.where(df_source["GuV"], "", df_source["Ebene73"])
- df_source["Ebene73"] = np.where(df_source["GuV"], "", df_source["Ebene74"])
- df_source["Ebene74"] = np.where(df_source["GuV"], "", df_source["Ebene75"])
- df_source["Ebene75"] = np.where(df_source["GuV"], "", df_source["Ebene76"])
- df_source["Ebene76"] = np.where(df_source["GuV"], "", df_source["Ebene77"])
- df_source["Ebene77"] = np.where(df_source["GuV"], "", df_source["Ebene78"])
- df_source["Ebene78"] = np.where(df_source["GuV"], "", df_source["Ebene79"])
- df_source["Ebene79"] = np.where(df_source["GuV"], "", df_source["Ebene80"])
- df_source["Ebene80"] = ""
- df_source["Susa"] = df_source["Konto_Gruppe"].str.slice(stop=1)
- df_source["Konto_KST"] = ""
- df_source["GuV_Bilanz"] = df_source["Konto_Art"]
- from_label = ["Konto_neu", "Konto_Nr_Händler"]
- to_label = ["Konto", "Acct_Nr"]
- df_source = df_source.rename(columns=dict(zip(from_label, to_label)))
- df_source = df_source[
- [
- "Konto",
- "Acct_Nr",
- "Konto_Bezeichnung",
- "GuV_Bilanz",
- "Konto_KST",
- "Konto_STK",
- "Konto_1",
- "Konto_2",
- "Konto_3",
- "Konto_4",
- "Konto_5",
- ]
- + get_default_cols(0)
- + get_default_cols(7)
- + get_default_cols(8)
- + ["Konto_Gruppe", "Konto_Nr_Gesamt", "Konto_Gesamt", "Susa"]
- ]
- df_source.to_csv(f"{self.config['path2']}/SKR51_Uebersetzung.csv", sep=";", encoding="latin-1", index=False)
- def skr51_vars(self):
- self.get_structure_and_tree()
- cols = get_default_cols(0)
- df_temp = pd.read_csv(
- f"{self.config['path']}/Export/Kostentraeger.csv",
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={i: str for i in range(0, 200)},
- )
- df_temp["value"] = df_temp["Ebene33"]
- df_temp["key"] = "[KTR]"
- df_temp = df_temp[df_temp["value"].str.contains(" - ")]
- df_list = [df_temp[["key", "value"]]]
- for s, entries in self.json_result["flat"].items():
- df = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
- df["key"] = df[cols[0]].apply(lambda x: "{" + s + "/" + x + "}")
- df["value"] = df[cols[1]]
- df_list.append(df[["key", "value"]])
- df = pd.concat(df_list)
- df_vars = df[df["value"] != ""]
- # df_vars.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
- df_main = pd.DataFrame([x["id"].split(";") for x in self.json_result["flat"]["SKR51"]], columns=cols)
- df_main["value"] = ""
- for c in cols:
- df_main = df_main.merge(df_vars, how="left", left_on=c, right_on="key", suffixes=(None, "_" + c))
- df_main[c] = np.where(df_main["value_" + c].isna(), df_main[c], df_main["value_" + c])
- df_amount = df_main[df_main["Ebene1"] == "Umsatzerlöse"].reset_index()
- df_amount["Ebene1"] = "verkaufte Stückzahlen"
- df_main = pd.concat([df_main, df_amount])
- # from_label = cols
- to_label = cols # get_default_cols(9)
- # df_main = df_main.rename(columns=dict(zip(from_label, to_label)))
- df_main[to_label].to_csv(
- f"{self.config['path2']}/SKR51_Struktur.csv", sep=";", encoding="latin-1", index_label="Sortierung"
- )
- def gcstruct_uebersetzung():
- base_dir = Path(__file__).parent.parent.resolve()
- import_dir = base_dir
- if base_dir.name == "scripts":
- if base_dir.parent.parent.name == "Portal":
- base_dir = base_dir.parent.parent.parent
- import_dir = base_dir.joinpath("Portal/System/IQD/Belege/Kontenrahmen")
- else:
- base_dir = base_dir.parent.parent
- import_dir = base_dir.joinpath("System/OPTIMA/Export")
- elif not base_dir.joinpath("GCStruct_Aufbereitung").exists():
- base_dir = Path("//192.168.2.21/verwaltung/Kunden/Luchtenberg/1 Umstellung SKR51/")
- if not base_dir.exists():
- base_dir = Path("//media/fileserver1/verwaltung/Kunden/Luchtenberg/1 Umstellung SKR51/")
- import_dir = base_dir
- struct = GCStruct(str(base_dir.joinpath("GCStruct_Aufbereitung")))
- struct.skr51_translate(import_dir.glob("Kontenrahmen_kombiniert*.csv"))
- print("Kontenrahmen_uebersetzt.csv erstellt.")
- # copyfile('c:/Projekte/Python/Gcstruct/Kontenrahmen_kombiniert.csv',
- # base_dir + 'GCStruct_Modell/Export/Kontenrahmen_kombiniert.csv')
- struct2 = GCStruct(str(base_dir.joinpath("GCStruct_Modell")))
- struct2.skr51_translate2(str(base_dir.joinpath("GCStruct_Aufbereitung/Export/Kontenrahmen_uebersetzt.csv")))
- print("SKR51_Uebersetzung.csv erstellt.")
- struct2.skr51_vars()
- print("SKR51_Struktur.csv erstellt.")
- def dresen():
- struct = GCStruct("c:/projekte/GCHRStruct_Hyundai_Export")
- struct.get_structure_and_tree()
- struct.export()
- def reisacher():
- struct = GCStruct("D:/GAPS_BMW/GCStruct_neue_Struktur_Planung", "D:/Planung/Planner2022/export")
- struct.get_structure_and_tree()
- # json.dump(res['flat'], open(f"{self.config['path2']}/{self.config['output']}", 'w'), indent=2)
- if __name__ == "__main__":
- # struct = GCStruct('c:/projekte/gcstruct_dresen')
- # struct = GCStruct('c:/projekte/python/gcstruct')
- # struct = GCStruct('c:/projekte/python/gcstruct_reisacher_planung')
- reisacher()
- # dresen()
|