hbv_export.py 3.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. import pandas as pd
  2. import numpy as np
  3. from datetime import datetime
  4. from gnupg_encrypt import encrypt
  5. import os
  6. from pathlib import Path
  7. current_year = "2023"
  8. current_version = "V1"
  9. base_dir = Path(__file__).parent.parent.resolve()
  10. config_dir = base_dir / "config" / "hbv"
  11. export_dir = base_dir / "export"
  12. hb_format = config_dir / "hb_format.csv"
  13. hb_department = config_dir / "hb_department.csv"
  14. hb_translation = config_dir / "hb_translation.csv"
  15. plan_amount = export_dir / f"Planner_{current_year}_{current_version}_Stk.csv"
  16. plan_values = export_dir / f"Planner_{current_year}_{current_version}_Plan.csv"
  17. hb_ignored = export_dir / "hbv" / "ignoriert.csv"
  18. current_date = datetime.now().strftime("%d%m%Y%H%M%S")
  19. # current_date = '24032021112656'
  20. def main():
  21. # Übersetzungstabelle importieren
  22. df_translation = pd.read_csv(
  23. hb_translation, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
  24. )
  25. # df_translation['column_no_join'] = np.where(df_translation['column_no']
  26. # .isin(['1', '3', '4']), df_translation['column_no'], '0')
  27. # Department-Zuordnung importieren
  28. df_department = pd.read_csv(
  29. hb_department, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
  30. )
  31. # Planwerte importieren
  32. values_converter = {i: str for i in range(0, 200)}
  33. values_converter[4] = lambda x: np.float64(x.replace(",", ".") if x != "" else 0.0)
  34. values_converter[5] = values_converter[4]
  35. df_values = pd.read_csv(plan_values, decimal=",", sep=";", encoding="latin-1", converters=values_converter)
  36. df_values["Gesamt"] = df_values["Gesamt"] + df_values["Periode13"]
  37. df_values["type"] = "2"
  38. df_values["type"] = np.where(df_values["Vstufe 1"].isin(["Materialaufwand"]), "3", df_values["type"])
  39. df_amount = pd.read_csv(plan_amount, decimal=",", sep=";", encoding="latin-1", converters=values_converter)
  40. df_amount["type"] = "1"
  41. df: pd.DataFrame = df_values.append(df_amount)
  42. # Planwerte alle positiv
  43. df["Minus1"] = np.where(
  44. df["Vstufe 1"].isin(["Umsatzerlöse", "Verk. Stückzahlen"]) | df["Zeile"].isin(["7410", "7440"]), 1, -1
  45. )
  46. df["Gesamt"] = df["Gesamt"] * df["Minus1"]
  47. # Planwerte übersetzen
  48. df = df.merge(df_department, how="inner", left_on="Betrieb Nr", right_on="department_id")
  49. df = df.merge(df_translation, how="left", left_on=["Zeile", "type"], right_on=["from", "type"])
  50. # fehlende Übersetzung
  51. df_ignored = df[(df["to"].isna()) & (df["Gesamt"] != 0)]
  52. df_ignored.to_csv(hb_ignored, decimal=",", sep=";", encoding="latin-1", index=False)
  53. # Planwerte formatieren und exportieren
  54. rename_from = ["bm_code", "BV_NUMMER", "FILIAL_NR", "to", "column_no", "Jahr", "Gesamt"]
  55. rename_to = ["BM_CODE", "BV_NUMMER", "FILIAL_NR", "ZEILE", "SPALTE", "JAHR", "WERT"]
  56. df_valid = df[df["to"].notna()].rename(columns=dict(zip(rename_from, rename_to)))
  57. df_valid["SPALTE"] = df_valid["SPALTE"].str.zfill(3)
  58. group_by = ["BM_CODE", "BV_NUMMER", "FILIAL_NR"]
  59. df_valid = df_valid[rename_to].groupby(group_by)
  60. for group in df_valid.groups:
  61. g = dict(zip(group_by, group))
  62. filename = (
  63. export_dir
  64. / f"hbv/{current_year}/{g['BV_NUMMER']}_{g['FILIAL_NR']}"
  65. / f"HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
  66. )
  67. os.makedirs(filename.parent, exist_ok=True)
  68. df_group = df_valid.get_group(group).groupby(rename_to[:-1]).sum().reset_index()
  69. with open(filename, "w") as fwh:
  70. for row in df_group.to_dict(orient="records"):
  71. fwh.write("I0155{BV_NUMMER}{FILIAL_NR}0{ZEILE}{SPALTE}00{JAHR}{WERT:16.2f}03\n".format(**row))
  72. encrypt(filename)
  73. if __name__ == "__main__":
  74. main()