hbv_export.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. import pandas as pd
  2. import numpy as np
  3. from datetime import datetime
  4. from gnupg_encrypt import encrypt
  5. import os
  6. base_dir = '/home/robert/projekte/python/planner/HBV/'
  7. hb_format = base_dir + 'hb_format.csv'
  8. hb_department = base_dir + 'hb_department.csv'
  9. hb_translation = base_dir + 'hb_translation.csv'
  10. plan_amount = base_dir + '../export/Planner_2022_V2_Stk.csv'
  11. plan_values = base_dir + '../export/Planner_2022_V2_Plan.csv'
  12. hb_ignored = base_dir + 'ignoriert.csv'
  13. current_year = '2022'
  14. current_date = datetime.now().strftime('%d%m%Y%H%M%S')
  15. # current_date = '24032021112656'
  16. def main():
  17. # Übersetzungstabelle importieren
  18. df_translation = pd.read_csv(hb_translation, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
  19. # df_translation['column_no_join'] = np.where(df_translation['column_no'].isin(['1', '3', '4']), df_translation['column_no'], '0')
  20. # Department-Zuordnung importieren
  21. df_department = pd.read_csv(hb_department, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
  22. # Planwerte importieren
  23. values_converter = {i: str for i in range(0, 200)}
  24. values_converter[4] = lambda x: np.float64(x.replace(',', '.') if x != '' else 0.0)
  25. values_converter[5] = values_converter[4]
  26. df_values = pd.read_csv(plan_values, decimal=',', sep=';', encoding='latin-1', converters=values_converter) # encoding='latin-1',
  27. df_values['Gesamt'] = df_values['Gesamt'] + df_values['Periode13']
  28. df_values['type'] = '2'
  29. df_values['type'] = np.where(df_values['Vstufe 1'].isin(['Materialaufwand']), '3', df_values['type'])
  30. df_amount = pd.read_csv(plan_amount, decimal=',', sep=';', encoding='latin-1', converters=values_converter) # , encoding='latin-1'
  31. df_amount['type'] = '1'
  32. df: pd.DataFrame = df_values.append(df_amount)
  33. # Planwerte alle positiv
  34. df['Minus1'] = np.where(df['Vstufe 1'].isin(['Umsatzerlöse', 'Verk. Stückzahlen']) | df['Zeile'].isin(['7410', '7440']), 1, -1)
  35. df['Gesamt'] = df['Gesamt'] * df['Minus1']
  36. # Planwerte übersetzen
  37. df = df.merge(df_department, how='inner', left_on='Betrieb Nr', right_on='department_id')
  38. df = df.merge(df_translation, how='left', left_on=['Zeile', 'type'], right_on=['from', 'type'])
  39. # fehlende Übersetzung
  40. df_ignored = df[(df['to'].isna()) & (df['Gesamt'] != 0)]
  41. df_ignored.to_csv(hb_ignored, decimal=',', sep=';', encoding='latin-1', index=False)
  42. # Planwerte formatieren und exportieren
  43. rename_from = ['bm_code', 'BV_NUMMER', 'FILIAL_NR', 'to', 'column_no', 'Jahr', 'Gesamt']
  44. rename_to = ['BM_CODE', 'BV_NUMMER', 'FILIAL_NR', 'ZEILE', 'SPALTE', 'JAHR', 'WERT']
  45. df_valid = df[df['to'].notna()].rename(columns=dict(zip(rename_from, rename_to)))
  46. df_valid['SPALTE'] = df_valid['SPALTE'].str.zfill(3)
  47. group_by = ['BM_CODE', 'BV_NUMMER', 'FILIAL_NR']
  48. df_valid = df_valid[rename_to].groupby(group_by)
  49. for group in df_valid.groups:
  50. g = dict(zip(group_by, group))
  51. filename = base_dir + f"{current_year}/{g['BV_NUMMER']}_{g['FILIAL_NR']}/HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
  52. os.makedirs(os.path.dirname(filename), exist_ok=True)
  53. df_group = df_valid.get_group(group).groupby(rename_to[:-1]).sum().reset_index()
  54. with open(filename, 'w') as fwh:
  55. for row in df_group.to_dict(orient='records'):
  56. fwh.write("I0155{BV_NUMMER}{FILIAL_NR}0{ZEILE}{SPALTE}00{JAHR}{WERT:16.2f}03\n".format(**row))
  57. encrypt(filename)
  58. if __name__ == '__main__':
  59. main()