12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import pandas as pd
- import numpy as np
- from datetime import datetime
- from gnupg_encrypt import encrypt
- import os
- from pathlib import Path
- current_year = "2023"
- current_version = "V1"
- base_dir = Path().cwd()
- config_dir = base_dir / "config/hbv"
- export_dir = base_dir / "export"
- hb_format = config_dir / "hb_format.csv"
- hb_department = config_dir / "hb_department.csv"
- hb_translation = config_dir / "hb_translation.csv"
- plan_amount = export_dir / f"Planner_{current_year}_{current_version}_Stk.csv"
- plan_values = export_dir / f"Planner_{current_year}_{current_version}_Plan.csv"
- hb_ignored = export_dir / "hbv/ignoriert.csv"
- current_date = datetime.now().strftime("%d%m%Y%H%M%S")
- # current_date = '24032021112656'
- def main():
- # Übersetzungstabelle importieren
- df_translation = pd.read_csv(
- hb_translation, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
- )
- # df_translation['column_no_join'] = np.where(df_translation['column_no']
- # .isin(['1', '3', '4']), df_translation['column_no'], '0')
- # Department-Zuordnung importieren
- df_department = pd.read_csv(
- hb_department, decimal=",", sep=";", encoding="latin-1", converters={i: str for i in range(0, 200)}
- )
- # Planwerte importieren
- values_converter = {i: str for i in range(0, 200)}
- values_converter[4] = lambda x: np.float64(x.replace(",", ".") if x != "" else 0.0)
- values_converter[5] = values_converter[4]
- df_values = pd.read_csv(plan_values, decimal=",", sep=";", encoding="latin-1", converters=values_converter)
- df_values["Gesamt"] = df_values["Gesamt"] + df_values["Periode13"]
- df_values["type"] = "2"
- df_values["type"] = np.where(df_values["Vstufe 1"].isin(["Materialaufwand"]), "3", df_values["type"])
- df_amount = pd.read_csv(plan_amount, decimal=",", sep=";", encoding="latin-1", converters=values_converter)
- df_amount["type"] = "1"
- df: pd.DataFrame = df_values.append(df_amount)
- # Planwerte alle positiv
- df["Minus1"] = np.where(
- df["Vstufe 1"].isin(["Umsatzerlöse", "Verk. Stückzahlen"]) | df["Zeile"].isin(["7410", "7440"]), 1, -1
- )
- df["Gesamt"] = df["Gesamt"] * df["Minus1"]
- # Planwerte übersetzen
- df = df.merge(df_department, how="inner", left_on="Betrieb Nr", right_on="department_id")
- df = df.merge(df_translation, how="left", left_on=["Zeile", "type"], right_on=["from", "type"])
- # fehlende Übersetzung
- df_ignored = df[(df["to"].isna()) & (df["Gesamt"] != 0)]
- df_ignored.to_csv(hb_ignored, decimal=",", sep=";", encoding="latin-1", index=False)
- # Planwerte formatieren und exportieren
- rename_from = ["bm_code", "BV_NUMMER", "FILIAL_NR", "to", "column_no", "Jahr", "Gesamt"]
- rename_to = ["BM_CODE", "BV_NUMMER", "FILIAL_NR", "ZEILE", "SPALTE", "JAHR", "WERT"]
- df_valid = df[df["to"].notna()].rename(columns=dict(zip(rename_from, rename_to)))
- df_valid["SPALTE"] = df_valid["SPALTE"].str.zfill(3)
- group_by = ["BM_CODE", "BV_NUMMER", "FILIAL_NR"]
- df_valid = df_valid[rename_to].groupby(group_by)
- for group in df_valid.groups:
- g = dict(zip(group_by, group))
- filename = (
- export_dir
- / f"hbv/{current_year}/{g['BV_NUMMER']}_{g['FILIAL_NR']}"
- / f"HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
- )
- os.makedirs(filename.parent, exist_ok=True)
- df_group = df_valid.get_group(group).groupby(rename_to[:-1]).sum().reset_index()
- with open(filename, "w") as fwh:
- for row in df_group.to_dict(orient="records"):
- fwh.write("I0155{BV_NUMMER}{FILIAL_NR}0{ZEILE}{SPALTE}00{JAHR}{WERT:16.2f}03\n".format(**row))
- encrypt(filename)
- if __name__ == "__main__":
- main()
|